在现代工业自动化生产中,涉及到各种各样的检查、测量和零件识别应用,例如汽车零配件尺寸检查和自动装配的完整性检查,电子装配线的元件自动定位,饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等。这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。
通常这种带有高度重复性和智能性的工作只能靠人工检测来完成,我们经常在一些工厂的现代化流水线后面看到数以百计甚至逾千的检测工人来执行这道工序,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100%的检验合格率(即“零缺陷”),而当今企业之间的竞争,已经不允许哪怕是0.1%的缺陷存在。
有些时候,如微小尺寸的精确快速测量,形状匹配,颜色辨识等,用人眼根本无法连续稳定地进行,其它物理量传感器也难有用武之地。这时,人们开始考虑把计算机的快速性、可靠性、结果的可重复性,与人类视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。
一般地说,机器视觉就是用机器代替人眼来做测量和判断。首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等;最后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。
机器视觉的特点是自动化、客观、非接触和高精度,与一般意义上的图像处理系统相比,机器视觉强调的是精度和速度,以及工业现场环境下的可靠性。 机器视觉极适用于大批量生产过程中的测量、检查和辨识,如:零件装配完整性,装配尺寸精度,零件加工精度,位置/角度测量,零件识别,特性/字符识别等。
其最大的应用行业为:汽车,制药,电子与电气,制造,包装/食品/饮料,医学。如对汽车仪表盘加工精度的检查,高速贴片机上对电子元件的快速定位,对管脚数目的检查,对IC表面印字符的辨识,胶囊生产中对胶囊壁厚和外观缺陷的检查,轴承生产中对滚珠数量和破损情况的检查,食品包装上面对生产日期的辨识,对标签贴放位置的检查。
目前,国际上视觉系统的应用方兴未艾,1998年的市场规模为46亿美元,而在国内,工业视觉系统尚处于概念导入期,各行业的领先企业在解决了生产自动化的问题以后,已开始将目光转向视觉测量自动化方面。